Propiedades y Estados Físicos

Estados de la Materia: Teoría cinética molecular y transiciones de fase


¿Sabías que los sólidos, líquidos y gases no son los únicos estados de la materia? Entre otros, están los plasmas, que tienen una energía tan alta que las moléculas se desgarran. Y los condensados ​​de Bose-Einstein, vistos por primera vez en 1995, son un extraño estado de la materia que puede atrapar la luz.


De joven, recuerdo haber visto asombrado como hervía el agua en una cacerola. Al buscar la explicación de por qué se formaban las burbujas, creí por un tiempo que el movimiento del agua calentada llevaba aire hacia el fondo de la cacerola que después se elevaba en forma de burbujas a la superficie. No sabía que lo que estaba pasando era aún más mágico de lo que imaginaba: las burbujas no eran de aire, en realidad eran agua en forma de gas.

Los diferentes estados de la materia han confundido a la gente durante mucho tiempo. Los antiguos griegos fueron los primeros en identificar tres clases (lo que hoy llamamos estados) de materia, basados en sus observaciones del agua. Pero estos mismos griegos, en particular el filósofo Thales (624 - 545 BC), sugirió, incorrectametne, que puesto que el agua podía existir como un elemento sólido, líquido, o hasta gaseoso bajo condiciones naturales, debía ser el único y principal elemento en el universo de donde surgía el resto de sustancias. Hoy sabemos que el agua no es la sustancia fundamental del universo, en realidad, no es ni siquiera un elemento.

La Teoría Molecular Kinética

Para entender los diferentes estados en los que la materia existe, es necesario entender algo llamado Teoría Molecular Kinética de la Materia. La Teoría Molecular Kinética tiene muchas partes, pero aquí introduciremos sólo algunas. Uno de los conceptos básicos de la teoría argumenta que los átomos y moléculas poseen una energía de movimiento, que percibimos como temperatura. En otras palabras, los átomos y moléculas están en movimiento constante y medimos la energía de estos movimientos como la temperatura de una sustancia. Mientras más energía hay en una sustancia, mayor movimiento molecular y mayor la temperatrua percibida. Consecuentemente, un punto importante es que la cantidad de energía que tienen los átomos y las moléculas (y por consiguiente la cantidad de movimiento) influye en su interacción. Al contrario que simples bolas de billar, muchos átomos y moléculas se atraen entre sí como resultado de varias fuerzas intermoleculares, como lazos de hidrógenos, fuerzas van der Waals y otras. Los átomos y moléculas que tienen relativamente pequeñas cantidades de energía (y movimiento) interactuarán fuertemente entre sí, mientras que aquellos con relativamente altas cantidades de energía interactuarán poco, si acaso.

Punto de Comprensión
Cuanto menor es la energía de una sustancia, ________________ la interacción entre sus átomos y moléculas.
Incorrect.
Correct!

¿Cómo se producen estos diferentes estados de la materia? Los átomos que tienen poca energía interactúan mucho y tienden a "encerrarse" y no interactuar con otros átomos. Por consiguiente, colectivamente, estos átomos forman una sustancia dura, lo que llamamos un sólido. Los átomos que poseen mucha energía se mueven libremente, volando en un espacio y forman lo que llamamos gas. Resulta que hay varias formas conocidas de materia, algunas de ellas están detalladas a continuación.

image ©Corel Corporation

Los sólidos se forman cuando las fuerzas de atracción entre moléculas individuales son mayores que la energía que causa que se separen. Las moléculas individuales se encierran en su posición y se quedan en su lugar sin poder moverse. Aunque los átomos y moléculas de los sólidos se mantienen en movimiento, el movimiento se limita a una energía vibracional y las moléculas individuales se matienen fijas en su lugar y vibran unas al lado de otras. A medida que la temperatura de un sólido aumenta, la cantidad de vibración aumenta, pero el sólido mantiene su forma y volumen ya que las moléculas están encerradas en su lugar y no interactúan entre sí. Para ver un ejemplo de esto, pulsar en la siguiente animación que muestra la estructura molecular de los cristales de hielo.

image ©Corel Corporation

Los líquidos se forman cuando la energía (usualmente en forma de calor) de un sistema aumenta y la estructura rígida del estado sólido se rompe. Aunque en los líquidos las moléculas pueden moverse y chocar entre sí, se mantienen relativamente cerca, como los sólidos. Usualmente, en los líquidos las fuerzas intermoleculares (tales como los lazos de hidrógeno que se muestran en la siguiente animación) unen las moléculas que seguidamente se rompen. A medida que la temperatura de un líquido aumenta, la cantidad de movimiento de las moléculas individuales también aumenta. Como resultado, los líquidos pueden "circular" para tomar la forma de su contenedor pero no pueden ser fácilmente comprimidas porque las moléculas ya están muy unidas. Por consiguiente, los líquidos tienen una forma indefinida, pero un volumen definido. En el ejemplo de animación siguiente, vemos que el agua líquida está formada de moléculas que pueden circular libremente, pero que sin embargo, se mantienen cerca una de otra.

image ©Corel Corporation

Los gases se forman cuando la energía de un sistema excede todas las fuerzas de atracción entre moléculas. Así, las moléculas de gas interactúan poco, ocasionalmente chocándose. En el estado gaseoso, las moléculas se mueven rápidamente y son libres de circular en cualquier dirección, extendiéndose en largas distancias. A medida que la temperatura aumenta, la cantidad de movimiento de las moléculas individuales aumenta. Los gases se expanden para llenar sus contenedores y tienen una densidad baja. Debido a que las moléculas individuales están ampliamente separadas y pueden circular libremente en el estado gaseoso, los gases pueden ser fácilmente comprimidos y pueden tener una forma indefinida.

Los sólidos, líquidos y gases son los estados más comunes de la materia que existen en nuestro planeta. Si quiere comparar los tres estados, pulse en la siguiente comparación animada . Note las diferencias del movimiento molecular de las moléculas de agua en estos tres estados.

image ©NASA/JPL/Caltech

Los plasmas son gases calientes e ionizados. Los plasmas se forman bajo condiciones de extremadamente alta energía, tan alta, en realidad, que las moléculas se separan violentamente y sólo existen átomos sueltos. Más sorprendente aún, los plasmas tienen tanta energía que los electrones exteriores son violentamente separados de los átomos individuales, formando así un gas de iones altamente cargados y energéticos. Debido a que los átomos en los plasma existen como iones cargados, los plasmas se comportan de manera diferente que los gases y forman el cuarto estado de la materia. Los plasmas pueden ser percibidos simplemente al mirar para arriba; las condiciones de alta energía que existen en las estrellas, tales como el sol, empujan a los átomos individuales al estado de plasma.

Punto de Comprensión
___________ tienen una forma indefinida y se expanden para llenar su contenedor
Incorrect.
Correct!

Como hemos visto, el aumento de energía lleva a mayor movimiento molecular. A la inversa, la energía que disminuye lleva a menor movimiento molecular. Como resultado, una predicción de la Teoría Kinética Molecular es que si se disminuye la energía (medida como temperatura) de una sustancia, llegaremos a un punto en que todo el movimiento molecular se detiene. La temperatura en la cual el movimiento molecular se detiene se llama cero absoluto y se calcula que es de -273.15 grados Celsius. Aunque los científicos han enfríado sustancias hasta llegar cerca del cero absoluto, nunca han podido llegar a esta temperatura. La dificultad en observar una sustancia a una temperatura de cero absoluto es que para poder "ver" la sustancia se necesita luz y la luz transfiere energía a la sustancia, lo cual eleva la temperatura. A pesar de estos desafíos, los científicos han observado, recientemente, un quinto estado de la materia que sólo existe a temperaturas muy cercanas al cero absoluto.

Los Condensados Bose-Einstein representan un quinto estado de la materia visto por primera vez en 1955. El estado lleva el nombre de Satyendra Nath Bose y Albert Einstein, quien predijo su existencia hacia 1920. Los condensados B-E son superfluídos gaseosos enfríados a temperaturas muy cercanas al cero absoluto. En este extraño estado, todos los átomos de los condensados alcanzan el mismo estado mecánico-quantum y pueden fluir sin tener ninguna fricción entre sí. Aún más extraño es que los condensados B-E pueden "atrapar" luz, para después soltarla cuando el estado se rompe.

También han sido descritos o vistos varios otros estados de la materia menos comunes. Algunos de estos estados incluyen cristales líquidos, condensados fermiónicos, superfluídos, supersólidos y el correctamente denominado "extraña materia". Para leer más sobre estas fases, visite la página Phase (Fase) de la Wikipedia, cuyo enlace se encuentra en la sección Para Seguir Explorando.

Transiciones de Fase

La transformación de un estado de la materia a otro se denomina transición de fase. Las transiciones de fase más comunes tienen hasta nombre. Por ejemplo, los términos derretir y congelar describen transiciones de fase entre un estado sólido y líquido y los términos evaporación y condensación describen transiciones entre el estado líquido y gaseoso.

Las transiciones de fase ocurren en momentos muy precisos, cuando la energía (medida en temperatura) de una sustancia de un estado, excede la energía permitida en ese estado. Por ejemplo, el agua líquida puede existir a diferentes niveles de temperatura. El agua fría para beber puede estar alrededor de 4ºC. El agua caliente para la ducha tiene más energía y, por lo tanto, puede estar alrededor de 40ºC. Sin embargo, a 100ºC en condiciones normales, el agua empezará una transición de fase y pasará a un estado gaseoso. Por consiguiente, no importa cuán alta es la llama de la cocina, el agua hirviendo en una cacerola se mantendrá a 100ºC hasta que toda el agua haya experimentado la transición al estado gaseoso. El exceso de energía introducido por la alta llama acelerará la transición de líquido al gas; pero no cambiará la temperatura. La curva de calor siguiente ilustra los cambios correspondientes en energía (mostrada en calorías) y la temperatura del agua, a medida que experimenta la transición de fase del estado líquido al estado gaseoso.

Como puede verse en el gráfico superior, el movimiento de izquierda a derecha muestra que la temperatura del agua líquida aumenta a medida que se introduce la energía (calor). A 100ºC el agua empieza a experimentar una transición de fase y la temperatura se mantiene constante, aún cuando se añade energía (la parte plana del gráfico). La energía que se introduce durante este periodo es la responsable de la separación de la fuerzas intermoleculares para que las moléculas de agua individuales puedan "escapar" hacia el estado gaseoso. Finalmente, una vez que la transición ha terminado, si se añade más energía al sistema, aumentará el calor del agua gaseosa o vapor.

Este mismo proceso puede ser visto inversamente, si simplemente miramos al gráfico superior yendo de la derecha hacia la izquierda. A medida que el vapor se enfría, el movimiento de las moléculas del agua gaseosa y, por consiguiente, de la temperatura, disminuirá. Cuando el gas alcanza 100ºC se perderá más energía del sistema a medida que las fuerzas de atracción entre las moléculas se reformen. Sin embargo, la temperatura se mantiene constante durante la transición (la parte plana del gráfico). Finalmente, cuando la condensación se acaba, la temperatura del líquido empezará a disminuir a medida que la energía se retira.

Punto de Comprensión
A medida que se aumenta el calor debajo de una olla de agua hirviendo, la temperatura __________ hasta que toda el agua se convierta en gas.
Correct!
Incorrect.

Fase transiciones y nuestro mundo

Las transiciones de fase son una parte importante del mundo que nos rodea. Por ejemplo, la energía que se pierde cuando la perspiración se evapora de la superficie de nuestra piel, le permite a nuestro cuerpo regular correctamente su temperatura durante los día cálidos. Las transiciones de fase tienen un importante rol en la geología, influenciando la formación mineral y, posiblemente, hasta los terremotos. Y quién puede ignorar la transición de fase que ocurre a aproximadamente -3ºC, cuando la crema, tal vez con algunas fresas o pedazos de chocolate, empieza a formar un sólido helado.

Ahora entendemos lo que ocurre en una cacerola con agua hirviendo. La energía (calor) introducida en el fondo de la cacerola causa una transición de fase localizada del estado de agua líquida al estado gaseoso. Ya que los gases son menos densos que los líquidos, esta transición de fase localizada forma bolsas (o burbujas) de gas que se elevan a la superficie de la cacerola y que se revientan. Pero la naturaleza es generalmente más mágica que nuestra imaginación. A pesar de todo lo que sabemos sobre los estados de la materia y sobre las transiciones de fase, todavía no podemos predecir dónde las burbujas individuales se formarán en la cacerola de agua hirviendo.



Active el resaltado de términos del glosario para identificar fácilmente los términos clave dentro del módulo. Una vez resaltados, puede hacer clic en estos términos para ver sus definiciones.

Active las anotaciones NGSS para identificar fácilmente los estándares NGSS dentro del módulo. Una vez resaltados, puede hacer clic en ellos para ver estos estándares.